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ABSTRACT

We introduce a fully-automatic system for generating 3D segmented models of indoor scenes
from images, focused on artificial indoor climbing walls and utilizing a new projection-based 3D
segmentation algorithm. Our segmentation algorithm outperforms state-of-the-art transformer-
based methods on indoor climbing walls, being able to utilize information from the 3D recon-
struction itself, such as camera positions and images.

First, COLMARP is employed to reconstruct the 3D model, aligning the new reconstruction with
an existing one. Next, a new 3D segmentation approach uses an image segmentation network
and projection onto the mesh to detect individual holds. Finally, a clustering algorithm groups
segmented holds into distinct routes based on color, type and spatial arrangement.

A proof-of-concept online application that uses this system has been developed independently to
the thesis, and is currently available at https://climbuddy.com/, showcasing the potential of this
approach to online climbing platforms.
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1 INTRODUCTION

Bouldering is a form of rock climbing that takes place on artificial indoor walls without the use
of ropes or harnesses. Climbers ascend boulders/routes that consist of same-colored holds and are
typically no more than 4 meters tall (Figure 1.1). The boulders are created by route setters, who
arrange holds on the wall to create boulders of varying levels of difficulty. Each problem is assigned
a grade, indicating the level of difficulty, with higher grades representing more challenging climbs.

Climbers want to be able to track their progress, which is usually measured by the difficulty of
boulders they can climb over time. A convenient way to do this is via a platform that displays the
current boulders in the gym, so that the users can mark them as climbed and keep track of their
climbing level, habits, socialize with friends, and more. While a few such platforms exist, they
achieve this by either showing a 2D top-down map, or as individual annotated images showing
the route from one particular angle, as seen in Figure 1.2.

Figure 1.1: An overview of climbing terminology on an indoor climbing wall. Two boulders are high-

lighted: one consisting of yellow holds, the other of blue holds.
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Figure 1.2: Current platforms for indoor bouldering (a), (b) and sample UI displaying a 3D model (c).

While platforms using both approaches have seen success, they suffer from a lack of interactivity
that can only be solved by displaying a 3D model of the boulders, which allows for viewing a route
from different angles, for the ability to study it ahead of climbing, etc. To obtain a segmented
model while minimizing manual work, an ideal system would take in images of the newly created
routes, and automatically produce a segmented textured model, separated into individual routes
to be displayed online for users to interact with, without any additional input.

The goal of this thesis is the implementation of the core logic behind such system — given images
from a commercial mobile phone, produce a segmented textured mesh of holds clustered into
routes, to be usable as a backend for a potential online climbing platform. In order for this system
to function, a number of problems have to be solved, as outlined in Table 1.1.

Table 1.1: Overview of the problems, tasks, solutions and backgrounds the thesis aims to solve.

Problem Task Solution Background
Want to obtain a 3D model... 3D Reconstruction =~ COLMAP ... .. .. 31 (2.2)
Image Segmentation YOLO,SAM ... .. 3.2 (2.3,2.4)

- and segment into hold.. Mesh Segmentation ~ New Algorithm ... 3.3 (2.1,2.3,2.4)

... and combine into routes. Instance Clustering ~ New Algorithm ... 3.4 (2.1, 2.4)




The thesis is structured in the following way: Chapter 2 provides necessary theoretical back-
ground for Chapter 3, which covers the solution to the problems outlined in Table 1.1. Implemen-
tation details, experimental results for the new algorithms and a description of a proof-of-concept
platform that uses the results are covered in Chapter 4, followed by conclusion in Chapter S.

Further expanding on the contents of Chapter 3, Section 3.1 covers the use of a popular open-
source 3D reconstruction software COLMAP [1, 2] to create the sparse reconstruction of the
boulder scene. However, since a climbing gym contains many different sections, of which only a
portion is changed at one time, the images have to be aligned to an existing reconstruction.

After obtaining the model, Sections 3.2 and 3.3 describe an approach to mesh instance segmenta-
tion using a new algorithm, which uses the camera positions and an image segmentation network
to detect the objects in images, project them onto the mesh, cluster them based on their overlap
and merge & threshold them to create the instance and semantic segmentation.

Finally, Section 3.4 covers clustering into routes based on their relative position and color/type by
constructing a graph and performing graph clustering to obtain the individual routes.






2 BACKGROUND

2.1 GrAPH THEORY

Graphs are a fundamental and highly versatile abstraction for capturing many concepts discussed
in this thesis, such as 3D meshes, overlaps of projections, distances and relations of objects in
space and much more. They come in many different form, but the most common definition is

the following [3].

Definition 2.1.1 (weighted graph). A weighted graph G = (V, E) consists of a set V of n ver-
tices, aset I/ C (‘2/) of m edges, and an edge weight functionw : £/ — R.

Given a vertex u, we say v is its neighbour if {u, v} € E. For our graph definition, this relation is
symmetric — if u is a neighbour of v, then v is also a neighbour of u, making the graph undirected.
We also define the function N : V +— 2V, which returns the neighbours of a given vertex, and
deg(v) = |N(v)| as their number. A graph is connected if there is a path (sequence of non-
repeating neighbouring vertices) between any two vertices.

2.1.1 GrarH CLUSTERING

The problem of graph clustering arises naturally in places such as parallel computing and social
networks. In these cases, the graphs contain distinct groups/clusters of vertices that are more
tightly connected and which we would like to identify, as seen in Figure 2.1.

Definition 2.1.2 (graph clustering). A graph clustering of G = (V, E) is a set of vertex subsets
C={C,...,Cx}suchthat C; C V and Vv € V exists exactly one C; such thatv € Cj.

® () @
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(a) A sample graph (b) and its clustering.

Figure 2.1: Graph (a) and one of its clusterings (b). Edge Weights are Euclidean distances between the ver-
tices. Each cluster is represented by a single color.
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The notion of graph clustering is useless without a way to measure its quality. We therefore define
an objective function f : C — R, which, given a clustering, returns a value corresponding to how
good it is. Higher values of the objective function correspond to better clusterings.

The choice of an objective function depends on the task at hand - for example, we could attempt
to minimize the fraction of edges within clusters (:ntra-cluster edges). This is called the coverage
cov(C) and is generally a poor choice, as the optimal solution for every connected graph yields
only one cluster.

Although many objective functions exist, a good choice for common clustering problems is 720d-
ularity [4]. The concept of modularity is rather straightforward — it is defined as coverage of the
clustering minus the expected coverage of the clustering if edges were randomized. In other words,
high modularity values correspond to clusterings with significantly more edges within clusters
than expected if edges were randomized.

Let ¢, denote the index of the cluster vertex v belongs to and a delta function 6(4, j) (being 1 if
i equals j and 0 otherwise). Also, let the weight function extend to sets of edges E’ C E and
verticesv C V as

wE) =Y w{uv))  w) =Y w{u,v}) (2.1)
{u,v}eE’ {v' w}eE

u'=u

We can then define modularity for a connected weighted graph as [5]

mod(C) = 2wt 5 U;V [w({u,v}) - W} 5cie;) (22)

Unfortunately, finding a clustering that maximizes modularity is NP-hard [6], so we have to resort
to using an approximation algorithm. One such algorithm is the Louvain method [7], which
comes from the following two observations about Equation (2.2) [8]:

1. modularity will never increase by moving vertices between non-adjacent clusters, and
2. if maximum modularity gained by moving a vertex is negative, we found a local optimum.

The Louvain method uses these observations as follows: first, assume all vertices are clusters of
size 1. In the first phase, go through each vertex, find an adjacent cluster that maximally increases
modularity (observation 1) and move it if the increase is positive, repeating until no modularity
increase can be made (observation 2). In the second phase, merge all clusters into single vertices,
summing the weights of the merged edges, and go back to phase 1 until a single cluster remains.

This method is very fast, since the modularity change of moving a vertex can be calculated in con-
stant time [7] (given pre-calculated values about the communities, which can be updated during
the first phase), and yields a hierarchy of clusterings at the end of each phase 2, which can be used
to select a clustering of a desired granularity.



2.1 Graph Theory

We use the Louvain method in our 3D segmentation algorithm for clustering segmentation pro-
jections into a single instance (Section 3.3.2), with vertices corresponding to individual projec-
tions and edges their respective overlaps within the mesh. It is also used in the route clustering
algorithm (Section 3.4), with vertices being the holds and edges the distances between them.

Besides a metric for measuring the quality of a clustering itself, we would also like to obtain one
for measuring similarity of two clusterings, as we can use it to tune the hyperparameters of the
clustering parts of our algorithms. In the most general formulation, we are given two clusterings
of n items Cgt and Cpred, and would like to measure their similarity € [—1, 1]. Increasing values
should correspond to more similar clusterings, obtaining 0 for randomly assigned clusters and 1
for a complete match.

Since the cluster ordering for Cg and Cpreq differs, we can’t easily determine whether a particular
item is in the “correct” cluster. Instead, we take a different approach — we count the number
of item pairs with matching/differing clusters for Cg and Cpreq respectively, as these are order-
independent. There are four options: items that are in the same clusters for both Cgt and Cpreq
(n11), items that are in different clusters for both (ngg), and items that are in the same cluster
for only one (101 and n10). We call ngg and 111 the positive occurrences (where the clusterings
agree), while ng1 and n1¢ the negative occurrences (where they disagree).

Measuring the positive occurrences over the total yields the Rand index [9]

RI — noo + N11 (23)
oo + no1 + Nio + N1

Formulated in this way, value 0 corresponds to clusterings with no positive occurrences instead
of random assignment, which is not desirable. Furthermore, the value for random assignment is
not fixed in this formulation, as it depends on the number of items and clusters. We address this
issue by using the adjusted Rand index [10], which offsets the Rand index by its expected value,
assuming the number and size of clusters stays the same

ARI = RI — E[R]] _ 2(ngon11 — no1M10) (2.4)
max{RI} — E[RI]  (noo + no1)(no1 + ni11) + (noo + nio)(nio + n11)

We use ARI to measure the performance of the route clustering algorithm (Section 3.4), as well
as the objective function for optimizing the route clustering hyperparameters (Section 4.5).



2 Background

2.2 3D RECONSTRUCTION

The task of 3D reconstruction is, in the most general formulation, the process of obtaining in-
formation about an object’s properties in 3D space. A common example is using 2D images to
reconstruct a colored point-cloud in the shape of the object. While common, 3D reconstruction
is not limited to just images and point-clouds — we can use other sources of information, such as
GPS or LIDAR, and obtain more advanced properties, such as the recently introduced Neural
Radiance Fields [11] and Gaussian Splats [12].

For the purposes of 3D segmentation, which is the main focus of this thesis, we are interested
in the classic problem — given a set of 2D images, reconstruct a 3D mesh (which we can then
segment). To do this, we use COLMAP [1, 2] for sparse reconstruction (camera positions, sparse
point-cloud), and OpenMVS [13] for dense reconstruction (dense point-cloud, mesh).

This section covers camera basics (2.2.1), which form the basis for 2D/3D projections used through-
out the thesis, as well as sparse reconstruction (2.2.2), which is related to Section 3.1. Since un-
derstanding dense reconstruction is not relevant to the thesis, we treat it as a black box and skip it
for brevity.

2.2.1 CAMERA BASICS

The human eye is an immensely complicated organ with a simple task — take in light and use it to
form an image of the outside world. It does this by channeling the incoming light onto a light-
sensitive layer at the back of the eye, which in turn transmits the information to the brain. Modern
digital cameras solve this task in a similar manner — channel the incoming light via a lens onto a
photo-sensitive sensor at the center of the camera, which processes the light per sensor pixel and
produces a digital image [14].

To begin, it is useful to consider the simplest camera model — using only the sensor (2.22). This
is as simple as non-functional, since light rays from one point of an object will hit all parts of the
sensor in view, producing a completely blurry image.

To solve this problem, we can filter rays emitted by a point of the object and only permit one to
go through. We can do this by using a pinhole (2.2b) — an infinitesimal hole that only permits a
single ray from each point to hit the sensor of the camera.

Y 24 4

(a) Sensor camera (b) Pinhole camera (c) Lens camera

Figure 2.2: Three camera models and their effect on rays reflected from points of an object.



2.2 3D Reconstruction

While functional in theory, real-world sensors are discrete and finitely sensitive — detecting single
rays of light through a tiny hole results in sub-par image quality. In practice, we will use a lens
(2.2¢) to channel multiple light rays from a single point on the object to a single part of the sensor.
This improves the quality of the image, but results in a more complicated camera model.

We will first focus on the pinhole camera model, as seen in Figure 2.3. More specifically, we would
like to formulate the relation between points in 3D space and their corresponding 2D projections
in the image plane. Since [z, , f]” and [X, Y, Z]" are multiples of each other, we obtain

x X X y Y

Y

This makes p the origin of the image plane, which is unintuitive, since the pixel (0, 0) should be
in the corner. To account for this, we further offset the equations by p, obtaining

X Y
x=f7+px y=f§+py (2.6)

Re-writing the equations using homogeneous coordinates, we obtain

x f 0 po| | X
yl =210 f pyl|Y (2.7)
1 0 0 1 A

intrinsic
matrix

where = is equality up to homogeneity, i.e. Vw # 0 : [z,y, 1] = [wz, wy, w].
We have formulated the intrinsic matrix K, which encodes intrinsic information of the camera
model. This includes the focal length f (distance from the pinhole to the image plane) the prin-

cipal point p and can be further modified to include more complex intrinsic, such as sensor skew
and magnification [14].

XY, Z]
object
[z,9]
r

Ve

pinhole

f

Vi

/ image
/ sensor plane

(@)

Figure 2.3: The pinhole camera model. f is the focal distance of the camera, p is the principal point, O is
the origin of the image plane, with the sensor rotated 180° relative to the image plane.



2 Background

The calculation above assumes that the position of the pinhole is located in the origin of the 3D
space and is oriented in the axis directions, which usually isn’t the case — in general, the camera
can be in any place in the scene, which can be done by offsetting it by a vector T3*! and rotating
by a rotation matrix R3*3. Here we can again use homogeneous coordinates to simultaneously
perform both translation and rotation, forming an extrinsic matrix and obtaining

. X
y| 2K[R T] Y (2.8)
1 N—— Z

extrinsic

matrix
Getting back to the lens camera, the most important difference between the lens model and the
pinhole model is lens distortion. Due to the imperfection of the lens, a variety of artifacts can be
introduced to the image, with the most common one being radial distortion.

For radial distortion located at the center of the image, we can model its effects by changing pixels
at radius 1 to radius ey (assuming normalized units) in the following way [14]

Toew = 7 - (Ar3 + Br? + Cr + D) (2.9)
where A, B, C, D are the distortion coefficients. Sample distortions can be seen in Figure 2.4.

Combining the described pinhole model with radial distortion, we have described the default
camera model that COLMAP uses for 3D reconstruction. Although omitting more advanced
distortion types and camera parameters might seem like we are wasting potential accuracy, their
parameters have to be reconstructed’ — a simpler model has fewer parameters to reconstruct and
thus a smaller chance of incorrect/degenerate values, which is worth the accuracy trade-off.

i

a) No distortion b) Barrel radial distortion c) Pincushion radial distortion

D=1 C =0.25D=0.75 C=-0.25D=0.25

Figure 2.4: Radial distortion of a checkerboard pattern. C, D are values for Equation (2.9), with A, B
being 0. Positive values correspond to barrel distortion, negative to pincushion distortion.

f you have calibrated the camera in advance and know the distortion parameters in advance, you can opt for more
advanced camera models - COLMARP supports OpenCV’s [15] camera model, which also models tangential distortion
and a few other parameters.

10



2.2 3D Reconstruction

2.2.2 SPARSE RECONSTRUCTION

Variables used in the intrinsic matrix, such as focal length f and principal point p, are usually
stored in image metadata and obtaining them is simple. This is, however, not the case for the
variables of the extrinsic matrix (rotation, translation) and the distortion coefficients, which have
to be inferred to form a good model of a scene.

This is the main goal of sparse reconstruction — infer the transformations of the cameras, distor-
tion coefficients and other unknowns in the camera model, all of which are necessary for recon-
structing the complete 3D model. This can be done in the following steps, which we will cover in
the following sections.

1. Feature Extraction — extract features (“interesting points”) from all images.

2. Feature Matching & Verification - find matching features across different images, mak-
ing sure that the relative transformation of the cameras is geometrically sensible.

3. Image Registration & Bundle Adjustment — iteratively register images to the scene and
perform joint adjustment of all scene parameters (triangulated points, extrinsics, etc...).

FEaATURE EXTRACTION

Given an arbitrary 2D image, not all of its pixels are equally “interesting” — a pixel from a white
background is not recognizable across multiple images, while a pixel on the corner of an object
likely is. A well-designed feature has to be recognizable from one image to another, which means
that it must be invariant to affine transformations (rotation, translation, change in perspective),
color transformations (brightness, contrast, saturation), and should be robust wrt. Zmage noise.

For 3D reconstruction, the SIFT [16, 17] (Scale-Invariant Feature Transform) features have been
used ubiquitously, since they require no machine learning, are invariant to the aforementioned
transformations and are simple to implement and match. While alternatives such as ORB [18]
and LIFT [19] exist, SIFT is well-suited to the task of 3D reconstruction.

To detect SIFT features, we start by calculating difference-of-Gaussians on multiple image scales
(octaves). This is done by repeated convolution of the images with the Gaussian kernel with de-
viation ¢ and subtraction. Each scale layer is further multiplied by a factor of k.

Given the input image I (z, y), Gaussian kernel G(z, y, o) and the convolution operator *, we
can obtain the scale space image L(x, y, o) and the difference-of-Gaussians image D(x, y, o) as
follows [16]

1
L(z,y,0) = G(z,y,0) x I(x,y) with G(z,y,0) = By 26_($2+92)/2"2 (2.10)
o

D(x7y70) = (G(:U,y,k:a) - G(xa%a)) * I(l’,y)

= L(.Z‘, Y, ]GO') - L(.ﬁl?, Y, 0)‘ (211)

11
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The local local minima and maxima of D across its 3 x 3 neighbourhood (also including adjacent
images in the same scale) images are taken as potential keypoints and their positions are further
refined using the Taylor expansion and filtered based on their local contrast.

To prevent detected keypoints that lie on an edge, which are considered undesirable due to their
edge position being arbitrary, the principal curvatures for each keypoint are calculated and those
with low ratios of the minimum/maximum curvature are rejected.

With the positions of features identified, we have to calculate their descriptors, which we will use
to match the same features across multiple images later on. To ensure correct matches, descriptors
should be invariant to the transformations which we’ve previously mentioned - the value of the
descriptor should stay approximately the same, such that it’s occurrence in another image will be
its nearest neighbour.

To calculate a keypoint’s descriptor, we first calculate its rotation and magnitude based on the
image gradient, calculated via Equation (2.12) and Equation (2.13) respectively. We then use a
region around the image based on the gradient to calculate an orientation histogram, using its
peaks to create one or more keypoints of different orientations but same positions.

m(a:,y) - \/(L(x + 17y) - L(.%‘ - lvy))2 + (L(l’,y + 1) - L(.Qf,y - 1))2 (2-12)

O(z,y) = tan ' (L(z,y + 1) — L(z,y — 1)) /(L(z + 1,y) — L(z — 1,y)) (2.13)

Scale ﬁ = >
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Figure 2.5: Difference of Gaussians across multiple scales (Lowe [16], page 6).
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Figure 2.6: Local image gradients forming a keypoint descriptor, weighted by a Gaussian distribution cen-
tered around the keypoint. The values used for SIFT are 16 X 16 gradients and 4 x 4 histogram
array (Lowe [16], page 15).

Finally, with the keypoints’ rotation and scales identified, we define the descriptor as an array
of histogram of image gradients, weighted using a Gaussian distribution around the keypoint
position, as seen in Figure 2.6.

FEATURE MATCHING

With features identified across images, the next step is to find images with matching features.
COLMAP implements multiple strategies to do this, the most common being exbaustive (all im-
age pairs are compared) and seguential (all image pairs in a sliding window are compared). It also
contains more advanced matching methods, such as a vocabulary tree [20], which we omit since
they are mostly useful for extremely large datasets (1 000+ images). Exhaustive is generally a safe
choice for smaller numbers of images (< 500), while sequential is a good choice when the images
are ordered.

To match two sets of features A and B, a naive brute-force algorithm would, for each feature of
A, find the nearest neighbour in B and vice versa, matching if the two features are the other’s
nearest neighbour. Formally, two features a € A,b € B match, if

W € B:d(a,b) <d(a,b)) A Vd' € A:d(a,b) <d(d,b) (2.14)
for a suitable distance function (e.g. Euclidean distance).

Despite seeming inefficient, a implementation GPU allows for massive parallelization and is very
fast for a smaller number of features. However, due to the quadratic nature of this approach, the
performance degrades significantly with increasing number of features, making it only usable for
a limited number of images.

A better approach is to build a data structure to store keypoints of image I3, and use the keypoints
of image A as queries, and vice versa. Since in theory, finding a nearest descriptor is linear, our data

13
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structure will have to return an approximate nearest neighbour, only requiring that it is /zkely the
nearest neighbor. Formally, for € ~ 0, we require that

p(I € B:d(a,b) >d(a,b)) <e A pEd € A:d(a,b)>d(d,b) <e (2.15)

COLMATP uses the FLANN library [21], which implements a number of approximate nearest
neighbour approaches; specifically, it matches SIFT descriptors using a randomized K-d tree.

Constructing a randomized K-d tree is simple — recursively split the data, choosing the dimension
with the largest variance, until the leafs contain less than the specified number of values. Since
we’re splitting the data in half at each step of the process, the depth of the tree will be logarithmic,
allowing for quick traversal and value retrieval.

Querying is done by linearly comparing values in leaf nodes nearest to the queried value — larger
number of explored leafs increases the probability that the nearest neighbour will be found, but
also increases the query time. Due to the logarithmic depth of the tree, this operation also runs in
logarithmic time.

In practice, two additional things are done to ensure better matching performance. First, the
values of the split positions impact precision of the queries — a query close to a split has a higher
change of not finding its nearest neighbor, since it might be in a leaf the query won’t explore.
To address this issue, COLMAP builds multiple trees (i.c. a forest) and determines the closest
neighbour by querying all of them simultaneously, which significantly reduces the impact of split
positions and can be done in parallel.

Second, each query also retrieves the second nearest neighbour and rejects the match if the ratio
between the distances to the nearest neighbour and the second nearest is large (Lowe [16] uses
0.8). This seemingly small change leads to a drastic improvement in match accuracy, since we’re
filtering weaker queries that have multiple plausible matches.

GEOMETRIC VERIFICATION

Even with the match filtering techniques described in the previous sections, invalid matches will
inevitably be introduced. To preserve only valid matches, we need to perform geometric verifica-
tion by finding a relative 3D transformation between the cameras that has a sufficient number of
matching keypoints — by checking that such transformation exists, we can safely eliminate incor-
rect matches and obtain relative transformations between cameras.

The relation between images observing the same 3D scene is referred to as epipolar geometry [14],
with a sample scenario captured in Figure 2.7. For simplification, we omit camera distortion ef-
fects, and only discuss the pinhole model as outlined in Figure 2.3.

Without loss of generality, let the first camera ¢ be located at origin with an identity rotation, and
the second camera ¢ have rotation R and translation T from origin. Assuming that the point s

14



2.2 3D Reconstruction

at a distance dy from c; and da from c3 and its image plane coordinates are X1 and X for both
cameras respectively, using Equation (2.7) for 2D-to-3D projection, we obtain

p=d Kflxl = R(dg K51X2) + T (2.16)
~—— ——
X1 X2

which, using the [T] notation for the matrix form of a cross product

0 =T, Ty
[T] x=| T, 0 —T, (2.17)
-T, T, 0

can be further modified into the following constraint

~T ~
%5 [T]xR %1 =0 (2.18)
~—~
essential
matrix
The essential matrix E encodes the relation between two points of calibrated cameras. We can
equally formulate the constraint using a fundamental matrix F, which will include the intrinsic
matrices and work on the image coordinates directly, as

3 Ko TFK ‘% =0 (2.19)
fundamental
matrix

Satisfying this constraint obtains the relative transformation and rotation of the cameras, which
can be done by expanding the constraint into homogeneous equations and using matched points
to solve them. Although in general, 8 points are required to obtain a unique solution (assuming
calibrated cameras), algorithms that require less points (i.e. the 5-point algorithm [22]) but obtain
multiple solutions can also be used, trading uniqueness for speed.

epipolar
plane

Figure 2.7: Epipolar geometry of two cameras 1, ¢ observing a common point p as X1, Xg respectively.
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2 Background

Finally, with the relative transformation obtained, we can filter out outlier matches as those whose
projections are sufficiently far apart after the relative transform and projections are applied to the
cameras, as well as use the inlier matches as triangulated points.

IMAGE REGISTRATION & BUNDLE ADJUSTMENT

Equipped with an algorithm for calculating relative transformations of cameras from matched
keypoints, it might seem like we can repeatedly register images into the scene until all are added.
This will, however, fail in practice — while the relative transformation between two cameras might
only contain a slight error, successive transformations will magnify this error and lead to an incor-
rect reconstruction.

To solve this, we need to use a global operation called bundle adjustment, which will fix these rela-
tive errors in a joint manner. More specifically, given a set of registered cameras C and triangulated
points P, each of which is seen by a subset of the registered cameras, we would like to minimize
the difference between the point’s measured image plane position (i.e. the keypoint position in
the image), and the position projected from its corresponding 3D point. This is referred to as
reprojection error, and can be formulated as

S T Ke[Re T]p—x|; (2.20)

ceC peP
csees p as X

with x being the measured position for the camera ¢ in context.

Equation (2.20) can be modified to use a more complex camera model, as well as other scene pa-
rameters, but in either case we obtain a non-linear least squares minimization problem, which
can be tackled by algorithms such as, in the case of COLMAP, the Levenberg—Marquardt algo-
rithm [23, 24] using its Ceres solver implementation [25]. Furthermore, as each camera observes
only a limited subset of points, bundle adjustment problems tends to be sparse, which can be ex-
ploited, in the case of large numbers of cameras and points, by more advanced sparse non-linear
least squares optimizers.

COLMAP’s reconstruction loop can thus be described as repeated image registration, tollowed by
triangulation of points as direct products of satistying Equation (2.19) for a given point p, and
subsequent bundle adjustment. In practice, the bundle adjustment is run in an amortized way
only after growing the reconstruction by a certain percentage [1, 2]. It also utilizes more robust
methods, such as RANSCAC [26] for outlier filtering, such as in the case of finding the relative
camera transformations for two-view geometry.
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2.3 Machine Learning

2.3 MACHINE LEARNING

Machine learning has been an essential tool in addressing problems where classical approaches
perform poorly. This is especially true for tasks whose optimal solutions can’t be formulated pre-
cisely, but can be described using a large number of inputs (X') with known solutions (y).

A few examples where machine learning performs better than classical approaches are
* image classification — X is the image and y the image class,
* chess engine — X are chess positions, y are move predictions, and

* weather forecast — X is weather data, y is future forecast prediction.

2.3.1 NEURAL NETWORK

With the rapid advancements in computer hardware, classical learning-based methods (SVMs,
decision trees, LDAs), have been largely surpassed by neural networks, which have proven to be
superior in a wide variety of tasks, including image & mesh segmentation.

Artificial Neural networks consist of zeurons, which aim to mimic their biological counterparts.
A neuron takes in values and, based on its weights, bias and activation function, outputs values
to neurons it is connected to. More formally, a neuron’s computation looks as follows

y = p(zw + b) (2.21)

z

with z input vector, w weights vector, b bias and ¢ activation function such as ReLU or tanh.
A tully-connected neural network (Figure 2.8) is a collection of neurons, consisting of an input
layer, a number of fully-connected hidden layers and an output layer.

1 2 L—-1 L

Input Output

Hidden Layers

Figure 2.8: A fully-connected neural network with L layers, with each dot representing a neuron. Biases
are omitted for simplicity, but can be implemented using a neuron of constant 1 in each layer.

17



2 Background

The size of the input and output layers are determined by the size of input/output data of the task,
while the number and size of the hidden layers are arbitrary, usually depending on the task com-
plexity. The activation functions of the last network layer usually differ from the ones of the other
layers and depend on the type of task — classification problems commonly use the softmax func-
tion and produce a probability distribution on the classification classes, while regression problems
prefer the identity function.

Performing #nference using a fully connected neural network is simple — feed data to the input
layer, perform the layer computations and output the neuron values in the output layer. Labeling
inputs and weights of each layer as z;, w; respectively, and using the fact that the bias of each layer
can be represented by a single neuron with a constant value of 1, we can describe the inference as

y = ¢L(zLwL)
= ¢r(pr-1(zZL-1WL-1)WL) (2.22)
=or(er—1(...o1(z1w1) ... Wr_1)Wp)

Training the network is more complicated — ideally, we would like to teach it to mimic the training
data in a way that generalizes to inputs it hasn’t seen during training. The idea is to perform
inference on training data, calculate the Joss £ using aloss function suitable to the task, and adjust
the network weights such that the loss decreases. The most common approach is gradient descent,
which finds the local minimum of the loss function by moving in the direction of its derivative by
adjusting the weights as follows

with Awd .= ;Mo:l 3
Wi

W?ew _ W?ld —r Aw?ld

(2.23)

where 7 is the Jearning rate for the algorithm, since we can’t move continuously, but instead by
discrete steps/iterations.

Since the inference is just a successive application of functions, we can utilize the chain rule on
Equation (2.22) to obtain the derivatives necessary to perform the gradient descent on our net-
work. Assuming a ReLU activation function, we obtain

oL 0L Oom I3 o a
ow, 03 0w 0+ 21 with &; := %, (2.24)
- L O Om [F —
o = D711 a;l I - wiyy - diag()(z1)) (2.25)

As seen in Equation (2.24) and Equation (2.25), we need both z; and Z; to calculate the partial
derivatives of w;. However, per Equation (2.25), we also need the partial derivatives of Z; to cal-
culate the partial derivatives of ;. These constraints give rise to backpropagation (Algorithm 1)
[27], which is the algorithm that we’ll use for training the network in a way that reduces repetitive
calculations.
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2.3 Machine Learning

Algorithm 1 Backpropagation Algorithm

Require: Training data (X, y), learning rate 7
1. // This is important — we need to break symmetry!
2: Initialize weights w randomly

3: for iterations ¢t from 1 to T do

4 //Forward pass

5:  for each layer [ from 1 to L do
6: Compute z; and Z; using X
7:  end for

8:  //Backward pass

9: AWZ(t) =0

10:  Set &7, based on the loss function and Y

11:  for each layer [ from L to 1 do

12: ~AW[ += Z]_1 - Sl
13: b1 =20y - WlT . diag(gpgfl(il_l))
14:  end for

15:  // Gradient descent
16:  for each layer [ from 1 to L do

17: w; —= TAw,
18:  end for
19: end for

The algorithm first performs a forward pass (line 4), calculating z; and Z;. Next, a backward
pass (line 8) alternates between calculating Aw; and Z;_1, since they depend on one another and
calculating them backwards prevents repetitive calculations, hence the name. Finally, gradient
descent is performed (line 15), repeating for 7" iterations.

As we’ve previously mentioned, both the loss function and the activation function depend on
the task we’re trying to solve, which influences what line 10 calculates. Taking regression as an
example, we can set the loss function to £(a, b) = 3(a — b)?, the activation function of the last
layer to identity and obtain

L(zr,y) = é(ZL —y)?  zp=r(zr) = 7L (2.26)

o

For classification, all calculations we’ve done except Equation (2.26) and Equation (2.27) are valid;
the last two need to be recalculated with the classification loss function (negative log likelihood)
and activation function (softmax) of the last layer.
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2 Background

2.3.2 CoONVOLUTIONAL NEURAL NETWORKS

The fully connected neural network, as described in the previous section, is in theory a universal
approximator — given enough neurons, it can approximate any function to arbitrary accuracy. In
practice, however, it will perform very poorly on certain tasks, such as anything image-related, e.g.
image classification. Since the dimensionality of the image (2D for black & white) doesn’t match
the dimensionality of network output (1D), the image either has to be flattened and discard the
spatial information, or the network structure has to change to accommodate for this.

Convolutional Neural Networks (CNNs) introduce new sparsely connected 2D layers (so far we’ve
only seen fully connected ones), which preserve the spatial information and thus significantly
improve network performance. They are based on convolutions; for the purposes of CNNS, we
define the convolution operation of an image I and a kernel K of size [2a + 1, 2b + 1] as

a b
KxI(xy) =Y > K(ij) Ix—iy-j) (2.28)

i=—a j=-b

Ordinarily, a kernel would be hand-picked based on the desired image operation, e.g. a convolu-
tion with a Gaussian kernel would blur the image. In the case of a CNN, the kernel is learned
instead, which allows the network to extract relevant image features.

A sample architecture of a CNN classification network for 2 classes is described in Figure 2.9. It
contains an zzput, corresponding to the input of the image. The input layer is connected to a
convolution layer which performs convolution on the image with a learned kernel. Next, a pool-
ing layer downsamples the image using the maximum of the input. Finally, two fully connected
layers, with the last one using a softmax activation function conclude the network, producing a
probability distribution on the classification classes.

In practice, the number of convolution layers, as well as the depth of the network would be sig-
nificantly larger. One of the first implementations, LeNet-5 [28], used for digit recognition, used
[input — 6 conv. — pool — 16 conv. — pool — fully connected], achieving a 0.35% error
rate on the MNIST [29] dataset.

-

!¢!

geiee -0 £ ¢ -
Input fan e I Output
Max Fully
Convolution Pooling Connected

Figure 2.9: Sample architecture of a CNN. Operations of the layers are shown on select neurons.
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2.3 Machine Learning

2.3.3 IMAGE DETECTION & SEGMENTATION

In the field of computer vision, the task of 7mage detection involves determining the bounding
boxes and classes of objects in an image (Figure 2.11a). Although this is sufficient for some prob-
lems, others require finer detail in the form of a precise segmentation mask for the detected objects,
in which case the task becomes image segmentation (Figure 2.11b).

Image detection and segmentation are closely connected — the task of creating a segmentation
mask is strictly mode difficult than creating a bounding box around the object. The architecture of
amodern image detector [30-33] consists of the following parts, usually as some forms of CNNs

* backbone - pre-trained on a large dataset, extracts key features,
* neck - bridge between backbone and head; gathers important features for the current task,
* head - predicts bounding boxes, classes and confidence scores from the gathered feature.

Due to the modularity of this architecture, the head can be designed to perform a number of
image-related tasks, such as pose estimation, object tracking, and object detection/segmentation.
This means that, besides the head, the network architecture can stay unchanged (Figure 2.10).

Input Backbone Neck Head
/—.II/

—/\—/ _/: o/ 4

Figure 2.10: Common image detector network architecture.

(2) Image detection. (b) Image segmentation.

Figure 2.11: Image detection (a) and segmentation (b) on a sample image from the crimp-1 dataset.
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Since the goal of image detection and image segmentation algorithms is to denote objects of in-
terest, we would like to determine the network quality in terms of matches between predicted
objects and their ground truth annotations. The predictions likely won’t be a perfect match, so
we can instead calculate intersection over union and count the match if the IoU value exceeds a

threshold.
More formally, given two object masks /1, I, we define their intersection over union ( IoU) as

L1 NI
IoU(I1, ) = ——+ 2.29
oU(h. B) = 757 (2.29)
Given a fixed IoU threshold and a set of predictions, we match them with the ground truth pre-
dictions to obtain a set of true positives (TP), false positives (FP) and false negatives (FN). We
then define their precision and recall as

s TP TP
precision = TP+ TP recall = TP+ PN (2.30)
Both precision and recall are important metrics for measuring the quality of a network. Precision
determines how precise the network is, in terms of only making detections that are correct — high
values might not correspond to a well-trained network, as it only measures the fraction of correct
guesses, ignoring the number of objects it missed. Conversely, recall measures how many of the
objects it detected, ignoring the mistakes/incorrect guesses it made.

To combine the two into a usable metric for measuring the network quality, we can iterate over all
detections in descending order of confidence, plotting a precision-recall curve. With each added
detection, the recall will monotonically increase as more objects are detected, while the accuracy
will form a zig-zag pattern, increasing with correct matches and decreasing with incorrect ones,
as seen in Figure 2.12. Smoothening the precision-recall curve and integrating yields the average
precision (AP), which balances both precision and recall. Finally, averaging AP over all IoU thresh-
olds yields the mean average precision (mAP), which is the metric that we use to evaluate both our
image segmentation (Section 4.3) and mesh segmentation (Section 4.4) results.
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—— Precision-Recall
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Figure 2.12: A precision-recall curve for a sample dataset of 3 objects and 8 detections. Green points indi-
cate true positives, while red points indicate false positives.
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2.4 Hyperparameter Optimization

2.4 HYPERPARAMETER OPTIMIZATION

In the previous section, we have covered the backpropagation algorithm, which used gradient de-
scent to find a local minimum wrt. the loss of the network. This allowed us to optimize the
parameters of the network such that the loss was minimized. But what if we wanted to also opti-
mize the hyperparameters of the network, such as the size of the hidden layers of the network or
the learning rate?

2.4.1 BAYESIAN OPTIMIZATION

Given a system with d real-valued hyperparameters, the task of hyperparameter optimization is
equal to that of maximizing a suitable fitness function f : R% + R. For a classification network,
we could use the network’s validation accuracy after training for 100 epochs.

To formulate the problem, we make the following general assumptions about f [34]:

* [ is expensive to calculate, The less evaluations the better.
* f is continuous, but derivatives can’t be calculated, No derivatives available.
* f’s feasible region is bounded. We constrain the byperparameter values.

The lack of derivatives means we can’t use them to move towards the optimum. What we can
do instead is to evaluate f at points which are most strategic for finding the maximum. Bayesian
optimization uses the Bayesian rule to determine the best points to evaluate f; more specifically,
it treats f as the prior and uses the evaluated points to calculate the posterior.

The algorithm is as follows:
1. pick asurrogate function f that models our fitness function
2. pick an acquisition function o that determines how advantageous evaluating each point is
3. evaluate f(argmax o), obtaining new data point 41
4. update f based on 1, returning to (3) until a stop condition is met

For f, Gaussian Processes are commonly used, since they are easy to work with and versatile due
to the choice of the kernel [35]. For «, we can use the Probability of Improvement, which picks
points that are most likely to improve on the current best [34], formulated as

z441 = argmax(apr(z)) = argmax(P(f(z) > (f(z1) +¢)) (2.31)

with 1 the current maximum and € determining the ratio between exploration of more uncer-
tain values, as opposed to maximizing in sections that were already explored.

An example of Bayesian optimization in action is captured in Figure 2.13. A one-dimensional
fitness function is optimized over 5 iterations, showing the values of the fitness function, as well
as those of the acquisition function.
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Iteration: 0 Iteration: 1
£=0.075 £=0.075

Iteration: 3 Iteration: 4
€=0.075 £=0.075

Figure 2.13: Bayesian optimization of a one-dimensional fitness function (Agnihotri and Batra [34]).

2.4.2 SUCCESSIVE HALVING

While Bayesian optimization is an elegant solution to hyperparameter optimization under the
assumptions we’ve made about f, problems such as network training can provide partial values
of f (e.g. validation set accuracy) during training. Since Bayesian optimization requires a full
evaluation of f, it can’t easily determine whether a particular set of hyperparameters should be

ignored early.

Successive Halving [36, 37], described as Algorithm 2, addresses this by only focusing on hyperpa-
rameters that seem promising, working as follows: given a certain budget B (computation time),
we create 1 initial hyperparameter configurations, evaluate them, eliminate 1/7 of the worst per-
formers while increasing the budget for the remaining ones and repeat. Note that Algorithm 2 this
is a simplified version as compared to [36, 37], omitting minimum resources and early stopping.

Iteration: 2
£=0.075

{

Iteration: 5
£=0.075

{

0 1 2 3 4 5 6

Algorithm 2 Successive Halving Algorithm

Require: Number of configurations n, total budget B, reduction factor n

1: SetT = get_configurations(n)
2: Sets = Llogn(B )J // number of elimination rounds

3: for each halving i from 1 to s do

4 = L%J // number of remaining configurations
5: oy = % // budget for each configuration

6 L = evaluate(T,r;)
7. T = eliminate(T, L, n)
8: end for

9: return best-performing hyperparameter configuration
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The goal, as outlined in the introduction, is to create a system which, given images from a com-
mercial mobile phone, produces a segmented textured mesh of holds clustered into routes to be

displayed online.

As this includes a number of subtasks (see Table 1.1), some of which can be solved using existing
methods, the main contribution of this work and focus of this chapter is a new 3D segmentation
algorithm, described in Sections 3.2 and 3.3. We show that this algorithm is conceptually simple,
can be used on any 3D-reconstructed scene and outperforms state-of-the-art 3D segmentation
algorithms on datasets with limited size (Section 4.4), such as in our case of indoor climbing gyms.

The remaining contents of this chapter are comparatively much shorter, and are included for the
sake of completeness, as they are necessary in the image-to-segmented-mesh process. They include
aligned 3D reconstruction (Section 3.1) and route detection via clustering (Section 3.4).

3.1 3D RECONSTRUCTION

The use of COLMARP for the purposes of 3D reconstruction, given a set of images, has been
covered extensively in Section 2.2. However, to obtain models that can be displayed online, we
have to solve two additional challenges.

First, the reconstruction has to be rigidly transformed (rotated, translated and scaled) to real-world
scale and orientation, in order to achieve sensible camera controls when viewing the reconstruc-
tion. Since this can’t generally be done automatically given images with commonly available meta-
data, we opt for a marker-based solution to infer the rigid transformation of the scene.

Second, subsequent updates to the model, caused by changes in the routes, have to be aligned to
the original reconstruction in order for the new routes to be in the correct place wrt. the model.
We achieve this by registering the images into the reconstruction and then performing constrained
bundle adjustment to keep the original cameras in place.

3.1.1 RiGID TRANSFORMATION INFERENCE via ARUcoO MARKERS

To transform the reconstruction, we use a 3D-printed measure (Figure 3.1b) consisting of 4 ArUco
markers (Figure 3.1a) [38, 39]. Detecting markers is done using OpenCV’s ArUco implementa-
tion [15], obtaining their respective rigid transformations (Figure 3.1c). The final transformation
is the average of the respective marker transformations over all images.
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(a) ArUco markers. (b) Measure model. (c) Marker pose estimation.

Figure 3.1: Measure model and its usage for pose estimation and rigid scene transform.

Since the terrain might be uneven when only using one measure, multiple measures can be used
to make the orientation inference more precise. If this is the case, linear regression over the marker
points is used to infer the overall rotation, since individual measures might be locally inaccurate.
This is especially useful for 3D reconstruction of larger spaces, where a small local error can cause
a large global one.

3.1.2 ALIGNING RECONSTRUCTIONS

The process of sparse 3D reconstruction, as described in Section 2.2, repeatedly registers images
and then uses bundle adjustment to jointly adjust their respective parameters. In our case, how-
ever, we would like to align the 3D reconstruction of the new routes to the reference one, so that
the 3D models align when combined after mesh segmentation.

A naive approach is to perform a separate reconstruction from the new images and then rigidly
transform it to match the reference, either by iterative methods such as RANSAC, or by regis-
tering images from the new reconstruction into the reference and transforming according to the
average difference in camera transforms. While it might seem that the latter will be prone to errors
due to the underlying model changing (old routes are replaced by new routes), the registration
algorithm is robust enough to find a set of valid matches.

While this works for smaller reconstructions and is directly supported by COLMAP, the local er-
rors in larger reconstructions lead to significant global errors over longer distances and thus make
it unusable for our use case. Instead, we take a different approach: register the new images into
the existing reference reconstruction, removing the prior registration images after the process is
complete. Although this might seem obvious, simply registering the images without bundle ad-
justment is inaccurate, as the new images are not jointly optimized. Running bundle adjustment
after will, however, shift the new reconstruction relative to the original and thus can’t be used.

To address this, we can use constrained bundle adjustment instead, which fixes a desired set of
parameters — in our case of cameras from the original reconstruction — and only optimize the
unconstrained parameters (i.e. the new images). This ensures that the newly registered images are
jointly optimized, and that their transformation matches that of the reference reconstruction.
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3.2 IMAGE DETECTION & SEGMENTATION

3.2.1 RELATED WORK

In the past decade, the field of image detection & segmentation has been dominated by CNNs.
While their use for classification and regression problems is rather intuitive, it is not obvious how
to adopt their architecture for image detection, mainly due to the localization of objects.

Early attempts, such as OverFeat [40], use a multi-scale sliding window approach and subsequent
merging of the predictions. This approach was shortly surpassed by R-CNN [41-43], which use a
separate algorithm for region proposals, a CNN paired with per-class SVMs for classification and
non-maximum suppression for final predictions.

Despite the success of the R-CNN architecture, the reliance on a proposal algorithm does not
allow for end-to-end training and thus requires individual tuning of its components. This was
addressed by YOLO [30-33], which incorporates bounding box predictions into the CNN net-
work architecture and thus allow for faster and more accurate bounding box predictions.

Since the release of the "Attention Is All You Need" paper [44], transformer-based approaches

[45-47] have achieved impressive results in many computer vision tasks, setting record scores in
COCO-related benchmarks [48].

The following section describes how to obtain high-quality image segmentation datasets from 3D
reconstructions in an efficient way, as well as a number of techniques for creating segmentation

networks using YOLO [30-33], RI-DETR [49] and SAM [50] architectures.

3.2.2 OBTAINING DATASETS

The performance of every neural network is dependent on the data it is trained on. Although ob-
taining a quality image dataset given arbitrary images is usually time-consuming, we are working
with a special category of images that are used as inputs for 3D reconstruction. Using the images
to perform 3D reconstruction creates constraints between the images and the 3D model via cam-
era projection, as described in Section 2.2.1 — an instance of an object in the 3D space projects
back to its 2D segmentation with the image space, and vice versa. This means that, under ideal
conditions, an image segmentation dataset can be created from a mesh segmentation using camera
projection, and it is therefore sufficient to manually annotate the less time-intensive of the two.

The quality of the image segmentation dataset created by doing this is dependent on a number
of factors, with the two main ones being the accuracy of camera positions and the quality of the
reconstructed 3D model. Both of these introduce different kinds of errors — an inaccuracy in cam-
era position shifts the segmentations within the image, while an error in the 3D model causes the
shapes of the segmentation masks to be incorrect. Using SAM [50], with the existing segmenta-
tion masks as input prompts, improves the coarse segmentation mask, as seen in Figure 3.2.

In order to test the viability of this approach to creating image segmentations, 5 datasets were
created from 2 climbing gyms. Images were annotated using LabelMe [51] with the help of SAM,
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(a) Projected segmentation without SAM. (b) Projected segmentation with SAM.

Figure 3.2: Part of an image from the crimp-1 dataset without SAM (a) and with SAM (b).

and the mesh was annotated using Blender [52]. The precision of the projected segmentations
with and without SAM was compared against the annotated ground truth segmentations, with
the results described in Section 4.3.

3.2.3 SEGMENTATION APPROACHES

Image segmentation, as described in Section 2.3.3, is very similar to image detection, generally
only differing in the ending parts of the model architecture. The recent introduction of SAM [50],
which can achieve high-quality segmentation masks from various input prompts, such as those
produced by a image detector, poses a question — can a detection network paired with SAM out-
perform a segmentation network?

As SAM accepts bounding boxes and points as inputs, we can directly use the detection results
from a detection network to create a segmentation mask. While the performance might be infe-
rior to a trained segmentation network for more complex objects and a specific set of classes, the
small amount of training data available from our datasets could be insufficient to properly train a
segmentation head.

Combining YOLO [30-33] and RT-DETR [49] with SAM [50], we obtain the following models:
* yolovii-seg — YOLOvVII segmentation model.
* yolovii-sam — YOLOVII detection model with SAM segmentations.
* detr-sam— RT-DETER detection model with SAM segmentations.
Furthermore, we test the following model variants:
* x-pt — Pre-train the model on a larger dataset, such as COCO [53].
* x-aug — Use image augmentations to improve model generalization.
* x-hyp — Use hyperparameter tuning.

The performance on the crimp and boulderhaus datasets is described in Section 4.3.
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3.3 MESH SEGMENTATION

3D segmentation is commonly understood to be the task of assigning semantic information to
the points of a 3D pointcloud based on their attributes such as position, color, local density, lo-
cal shape, etc. [54, 55]. The semantic information is most commonly either the class the point
belongs to, referred to as 3D semantic segmentation, or which instance of an object the point
belongs to, referred to as 3D instance Jegmenml‘z'onl. Furthermore, we can distinguish between
closed-vocabulary approaches, which define a finite set of classes to classify the points into, and
an open-vocabulary approaches, which learn features that can be queried using open-vocabulary

descriptions such as object texture, color, type or size.

Figure 3.3: Example of a textured mesh (left), along with its 3D semantic segmentation (middle) and in-
stance segmentation (right). The colors are chosen randomly per-instance and per-class.

3.3.1 RELATED WORK

There have been many recent advancements in the field of closed-vocabulary 3D segmentation
[54-65] using a variety of learning-based methods, with one thing in common: the learning is done
on the level of the pointcloud and thus requires training data in the form of (at least) segmented
pointclouds. This data is generally available for more common objects and indoor scenes [66, 67],
but it is not easy to obtain for more specialized tasks, such as the subject of this thesis.

The solution proposed in this thesis is to use readily available state-of-the-art image segmentation
infrastructure to obtain datasets and segmentation models for a desired subset of classes, and then
use 3D projections of the 2D segmentations to create the resulting 3D instance segmentation.

The algorithm shares a number of similarities with [68], which also performs 2D segmentation
and subsequent projection onto a mesh for the purpose of recognizing building rooftops. It differs
in a number of ways: first, it uses RGB-D input for the segmentation network, while we use RGB.
Since using RGB-D would preclude us from using pre-trained checkpoints (Section 4.3) and our
data is limited, this is not a viable choice. Our algorithm, however, makes use of distance data
during merging. Second, it merges projections by selecting strong candidates and then merging

Tt is important to note that instance segmentation is not a special case of semantic segmentation — a instance-
segmented mesh only carries information about distinct objects, not which classes the objects belong to.
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iteratively based on overlap, whereas we use a graph clustering method on a graph made out of
projections and their overlaps, allowing for a global approach instead of a local one.

Another similar work is SAM3D [69], which uses SAM [50] for image segmentation and then
iteratively merges segmented depth-maps using bi-directional merging of the segmented point-
clouds. The concept of projection is shared with our algorithm, but again differs in the merging
approach — instead of local merges, we use graph clustering to make the approach global. Further-
more, they use an over-segmentation of the scene via distance-based approaches [70, 71], since the
SAM-only segmentation generates a large amount of noise.

Unfortunately, as the source code for [68] is not openly available and [69] only performs instance
segmentation without semantic segmentation, we will instead compare our algorithm with open-
source state-of-the-art 3D segmentation methods: OneFormer3D [65] and Point Transformer [64].
The results on the obtained datasets (3.2.2) can be found in Section 4.4.

These two methods were selected since they are the top-performing methods for 3D instance and
semantic segmentation on the S3DIS indoor segmentation dataset [72], which should make them
suitable for segmenting 3D models of indoor climbing gyms.

OneFormer3D [65] is a transformer-based approach, which unifies the semantic and instance seg-
mentation tasks into one, as opposed to standard practice of using different models for both tasks
respectively. It starts with a U-net, which uses sparse 3D convolutions to create features for each
point, creating superpoint features by either using voxel pooling or more computationally inten-
sive point-wise feature pooling. The superpoints are then fed into the transformer decoder layers,
obtaining trained instance kernels. Convolving the kernels with the superpoints produce instance
and semantic masks.

PointTransformer [64] approaches the problem by decreasing the dimensionality of the problem,
referred to as serialization, from 3D to 1D using space-filling curves. Sorting points based on the
curve preserves locality, as nearby points on the curves correspond to nearby points in the original
space, and can thus benefit from existing solutions to 1D problems. The transformer attention
mechanism then works on patches of the ordered points, with successive attention layers using
different space-filling curves for improved generalization. Similar to OneFormer3D, it uses a U-
net architecture for pooling, and alternating encoder/decoder transformer layers.

Both OneFormer3D and PointTransformer use augmentations to enhance the model generaliza-
tion. They are similar to image augmentations used for training our image segmentation networks
as described in Section 4.3, and include rotation, scaling, flipping, position, color jitter and elastic
distortions.
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3.3.2 ALGORITHM

The general idea is to use a segmentation network to predict the objects in the images, project
them on the mesh and merge them to create the object instances. This differs from the standard
3D instance segmentation approaches [54-63], which operate on the pointcloud level instead.

Our algorithm can be broadly split into the following parts

1. projection — 2D segmentations are projected onto the mesh, with their scores being the
detection network scores multiplied by distance to the camera (Figure 3.4a)

2. per-class clustering — per-class graphs are constructed, with vertices being projections and
edges their IoU multiplied by their scores, and clustered via Louvain (Figure 3.4b)

3. merge & threshold - clusters are merged, preserving triangles based on the ratio between
positive and negative detections from all segmentations (Figure 3.4c)

The following sections cover each of these parts in turn. Since the algorithm contains a number of
hyperparameters, Bayesian optimization [29] has been used to optimize them for their respective

datasets, with the results, as well as comparisons against the aforementioned transformer-based
3D segmentation approaches, discussed in Section 4.4.

(a) projection (b) per-class clustering (c) merge & threshold

(d) resulting segmentation

Figure 3.4: Step-by-step visualization of the 3D instance segmentation algorithm.
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PROJECTION

The projection algorithm (Algorithm 3) uses the camera model developed in Section 2.2.1 to
project the segmentations onto the mesh. It does this by first creating segmentation masks, ray-
casting the mesh triangles (with some prior filtering for optimization) onto them and grouping
all triangles from to the same projected segmentation.

Algorithm 3 Projection

Require: 2D segmentation S;, camera parameters C;, triangle data 7
1. //Step I: create a segmentation mask
2: M; = mask_from_segmentation(S;, MASK_RESOLUTION)

3: // Step 2: Filtering of distant/unseen triangles
4: Filter t € T where dist(t, C.center) > VISIBILITY_DISTANCE //f00 far
Filter t € 7 where angle(t — C.center, C.direction) > 90° //not seen by the camera

il

// Step 3: Raycast from image to mesh triangles
for each remaining triangle t € 7 do

Raycast from C to t, obtaining tpi; and normalized image coordinates p = [Zim, yim]T
dnorm = VISIBILITY_EASING_FUNCTION(distance(t,C.center) / VISIBILITY_DISTANCE)

10:  if t == ty;; then

11: thit.score = M, [p].score * dporm

12: thit.class = M;[p].class

13: thit-object_id = M|p]|.object_id

14:  else

15: this.distance = dnorm  // Zncorrect hit - record distance (for thresholding)
16:  endif

17: end for

18: // Step 4: Create triangle groups based on projection object ID
19: Initialize empty list of projections P;

20: for each unique object_id € 7 do

21:  Initialize new mesh projection p

22:  p.triangles = {t | t € T A t.object_id == object_id}
23.  p.class = p.triangles|0].class /they e all the same

24:  p.score = average(p.triangles.score)

25:  p.triangle_scores = p.triangles.score

26:  P;.append(p)
27: end for

28: return projections P;, non-object triangle distances D; := {t.distance | t € T}
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(a) Quadratic Ease Out (b) Linear (c) Quadratic Ease In

Figure 3.5: Influence of different easing functions on the same camera projection. Green areas are positive
detections, black are negative detections and red parts are not seen by the camera.

To account for the fact that more distant objects tend to be recognized less precisely / incorrectly, a
visibility distance multiplier is applied to the segmentation object scores (line 11). Since an object s
seen from multiple views and distances in a 3D reconstruction, this increases the impact of better
views on the 3D segmentation.

The multiplier is calculated using two hyperparameters (line 9): VISIBILITY_DISTANCE, which de-
termines how far each camera sees, and VISIBILITY_EASING_FUNCTION, which is applied on the nor-
malized distances for further control over how objects are scored. The influence of the easing
functions on a sample reconstruction can be seen in Figure 3.5

Creating segmentation mask (line 2) is necessary for quickly checking the results of raycasting
(line 8), since 2D segmentation objects are usually stored as polygons, making checking for many
intersections very slow. The MASK_RESOLUTION parameter determines the mask resolution, trading
projection speed and memory for accuracy.

The function notably doesn’t just return groups of triangles of the i-th image P;, but also its non-
object distances D;. These are distances to triangles which the camera saw but didn’t contain an
object. This is useful information for thresholding — if a triangle was a part of an object in a single
camera but not in many others, there is a high chance that it was a mistake.

PER-CLASS CLUSTERING

With the per-class triangles identified, we group projections of the same object based on the pro-
jection overlaps using Louvain clustering [7] (Algorithm 4). To do this, we build a graph for each
class (line 4), with vertices being projected segmentations and edges being triangle IoUs between
them, multiplied by the respective object scores (lines 10, 11). The idea behind this is that strong
detections with high overlap seen from a closer distance should cluster more strongly than weaker
ones with smaller overlap from afar.

Since the number of graph edges increases quadratically with the number of detected projections
and weight calculation is not cheap, building the graph naively is infeasible. Fortunately, since the
vertices correspond to objects in 3D space, we can use spatial hashing (line 5) to skip checks for
objects that can’t intersect and thus have edge weight 0, which provides a significant speedup over
the naive approach. The size of the spatial hashing cells is determined by cELL_RESOLUTION and can
be calculated from the sizes of the projections, e.g. a multiple of the average.
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Algorithm 4 Per-class Clustering

Require: Filtered projections P
1: Initialize empty clusters of projections C

2: for each class c do
3. //Step I: initialize graph with vertices and no edges, along with the spatial hash

& G={p|pePAp.class ==c},{})
s:  SH = build_spatial_hash(G.vertices, CELL_RESOLUTION)

6: /) Step 2: create edges using the spatial hash only where necessary
7. for each projection p € P do
8: for each neighbor q € SH.neighbours(p) do
9: // Compute edge weight

o on = e i)

11: weight = iou * p.score * q.score

12: if weight > 0 then

13: G.add_edge(p, q, weight)

14: end if

15: end for

16:  end for

17: // Step 3: perform Lonvain clustering
18:  C.extend(louvain_clustering(G, & = DETECTION_RESOLUTION))
19: end for

20: return clusters of projections C

The o parameter for the Louvain algorithm controls the size of detected clusters, with larger values
corresponding to larger clusters, implemented as an extension to the original Louvain clustering
algorithm [73]. Its effects on the clustering can be seen in figure Figure 3.6 — smaller values lead
to undersegmentation (Figure 3.6a), while higher lead to oversegmentation (Figure 3.6c).

(a) a = 0.01 (b) o = 1.00 (c) a = 100.00

Figure 3.6: Influence of different Louvain resolutions on the segmentation.
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MERGE & THRESHOLD

With clusterings available, the final step of our algorithm is to merge the projections to obtain the
resulting object masks (Algorithm 7). To ensure the object boundaries are correct, we consider
two values when deciding which triangles form an object. The positive triangle score (Algorithm 5)
is the sum of the scores of its projections, since the more projections it appears in, the more likely
it is to belong to the object. Conversely, the negative triangle score (Algorithm 6) is the sum of its
non-object distances (i.c. distances to cameras where the triangle wasn’t a part of any object), plus
the scores of same-class projections from other clusters.

The balance between positive and negative scores ensure smooth object borders — triangles further
away from the object centers decrease in positive score and increase in the negative, as they are seen
in less projections, or in projections belonging to other clusters. The total score is then just the
portion of positive score over total score, with higher values corresponding to a higher likelihood
thata triangle is part of the segmented object, determined by a THRESHOLD parameter. The influence
of the THRESHOLD parameter on the resulting segmentation can be seen in Figure 3.7 — smaller values
permit more triangles and might over-estimate the object boundaries, while larger values do the

opposite.
Algorithm 5 compute_positive_score(t, C) [subroutine of Algorithm 7]
1: pos =10
2: for each projection p € cdo
3. if t € p.triangles then
4 pos += p.score
s:  endif
6: end for
7: return pos
Algorithm 6 compute_negative_score(t, c, D, C) [subroutine of Algorithm 7]
I: neg =0
2: for each non-object camera distance D; € D do
3. neg += D;]t]
4: end for
5: for each other cluster ¢’ € C, ¢/ # cand its projections p’ € ¢’ do
6. if ¢’.class == c.class A t € p’.triangles then
7: neg += p.triangle_scores|t]
8: endif
9: end for

10: return neg
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() THRESHOLD = 0.05 (b) THrRESHOLD = 0.35 (c) THRESHOLD = 0.85

Figure 3.7: Influence of different THRESHOLD values on the resulting segmentation.

Algorithm 7 Merge & threshold

Require: Clustered projections C, non-object distances D = {Dy, ..., D;}, triangle data T
1: Initialize empty list of merged object instances O
2: for each cluster ¢ € C do

3:

b

17:
18:

19:
20:
21:

22:

cluster_triangles = | J

pec p-triangles

for each triangle t € cluster_triangles do

// Positive score: sum of scores of projections the triangle is a part of
t.pOS = compute_positive_sco re(t, C)

// Negative score: non-object distances + scores of projections from different clusters
t.neg = compute_negative_sco re(t, C, D, C)

// Total score is just the fraction of the positive over total score

_ t.pos
t.score = Tposttneg

if t.score < THRESHOLD then

Filter t from cluster_triangles
end if

end for

if |cluster_triangles| > O then

Initialize new merged instance o

o.triangles = cluster_triangles
o.class = o.triangles[0].class //they’re all the same

O.append(o)

end if
end for

return object instances O
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3.3.3 MODIFICATIONS FOR UNSCALED RECONSTRUCTIONS

As described, the algorithm assumes an appropriately scaled reconstruction, such that the visI-
BILITY_DISTANCE and CELL_RESOLUTION parameters can be based off of real-world length measure-
ments. Although this is not an issue for our use case of hold segmentation as all models are rigidly
transformed to real-world coordinates (Section 3.1.1), this makes the algorithm unusable for gen-
eral 3D reconstructions.

The solution is to replace the parameters with their normalized variants, such that there is no scale
dependence and that they can be tuned based on the particular task. We opt for the following
transformation:

™
PARAMETER — tan<§ . NORMALIZED_PARAMETER) . davgu

where NORMALIZED_PARAMETER € [0, 1), and d,yg being the average over all camera-to-object dis-
tances. Values in the range [0, 0.5] behave linearly, obtaining the average distance at 0.5, and going
to infinity as we approach 1.

To accommodate for this in our algorithm, we first perform raycast to all object centers before run-
ning Algorithm 3. As this is not a costly operation, we can perform multiple randomly sampled
raycasts to ensure that the calculated distance is representative of the given projection.
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3.4 INSTANCE CLUSTERING

The final step, after obtaining the segmented mesh, is to group the holds into their respective
routes. Since this is a relatively niche and not particularly difficult problem, we omit related works
section and simply formulate our solution, for the sake of completeness.

Routes are made up of individual holds of the same color that are closely packed together. Since
a particular gym has only a limited selection of holds, the set of colors is fixed for each gym, both
technically and practically, as people need to be able to distinguish the colors of the individual
routes they are climbing. This means that we can simply train a classifier to detect colors/types of
holds, and use graph clustering (similar to the previous section) to form the individual routes.

As abyproduct of this approach, we can provide statistics about the number of holds of particular
color/type currently on the wall, which is useful information for the setters in order to track holds
on/off the wall. This also allows us to filter out holds that shouldn’t be clustered — for example,
one type of climbing holds is commonly reserved as “downclimb holds”, which serve the purpose
of safely climbing down after an ascent of a boulder and should be ignored.

First, we train an image classifier on the individual segmentations of the input images (Figure 3.8,
Algorithm 8) using the YOLO [30-33] architecture. We use the masked cutouts of the holds
created via the segmentations, helping the network to focus on the relevant part of the image.

Since we have a set of predictions for the same 3D object, we sum the per-class confidences, weigh-
ing them by the number of pixels in the classified image (line 6), as smaller segmentations are
generally less precise, and set the object’s class to the one with the highest score (line 8).

Next, per-class graphs are constructed, with vertices being the segmented 3D holds and edges their
geodesic distances within the mesh, calculated using the FlipOut algorithm [74] (Algorithm 9).
Using geodesic distance is crucial, since two holds could be close together using metrics such as
Euclidean distance, but be on the opposite side of a wall, resulting in impossible routes. The z

Algorithm 8 Object Type Classification

Require: Objectinstances O = {Oy,...}
1: for each objectinstance 0 € O do
2. // Classify the object using its corvesponding segmentations, weighted by their area
3:  Initialize class confidences list C
4. for each segmentation s € o.segmentations do
S: area = s.width x s.height
6 C.append(area * class_conﬁdences(s))
7. end for

8:  o.class = argmax C
9: end for

10: return class groups G = {{o.class = ¢; | 0 € O} | ¢; € classes}
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pEElalediln

Figure 3.8: Segmentations belonging to one 3D segmented hold.

Figure 3.9: 3D hold instances (left) and their color assignments from the classifier (right). The missing
holds in he right image have been classified as volumes, which belong to all routes, and have thus
been filtered out from the route detection process.

(up) coordinate of the geodesic path is optionally multiplied by FLATTEN_RATIO € [0, 1] (line 5),
with the idea being that since routes generally go up, flattening the model in the z coordinate will
increase the accuracy.

Finally, we use Louvain clustering on each per-class graph to obtain the resulting routes. Similar to
Section 3.3.2, we use an « parameter to adjust the size of clusters. Bayesian optimization [29] has
been used to optimize the hyperparameters for their respective datasets, with the results discussed
in Section 4.5.

Algorithm 9 Route Clustering

Require: Class groups G
1: Initialize empty list of routes R

2: for class group G' € G do

3. // Calculate geodesic paths between objects (possibly flattened)

4  paths = pairwise_geodesic_paths(G, MIN_HOLD_DIST, MAX_HOLD_DIST)
s:  paths.z *= FLATTEN_RATIO

6 // Cluster group, with edge weights being geodesic path distances

7:  graph = create_graph(vertices = GG, edges = (g), weights = paths)
8:  R.extend(louvain_clustering(graph, o = DETECTION_RESOLUTION))

9: end for

10: return clustered routes R
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4 EXPERIMENTS

To evaluate the performance of the algorithms described in Chapter 3, we first create datasets for
2 different climbing gyms (Section 4.2), comparing the use of semi-automatic annotation to the
mesh annotation and projection approach. To ensure model generalization, each gym contains
at least 2 separate datasets, the first being used for training and any additional one being used for
testing/validation, respectively. We show that the projection approach is superior to semi-manual
annotation, saving a significant amount of time in exchange for a minor loss in accuracy.

Next, we benchmark the proposed image segmentation approaches (Section 4.3), picking the best
performing variant for our mesh segmentation algorithm. We conclude that, in our case, the de-
tection + SAM-based segmentation approach is superior to a segmentation network.

Our mesh segmentation algorithm is evaluated on the obtained datasets and compared against
two transformer-based state-of-the-art 3D segmentation algorithms (Section 4.4), outperform-
ing them by a wide margin, as it is able to utilize additional information from the available 3D
reconstruction. However, it is orders-of-magnitude slower, though this trade-off is acceptable for
our use case, as the main bottleneck is 3D reconstruction.

4.1 SETUP

The training and evaluation of all models has been performed on a single Nvidia 4090 (24 GB
VR AM). Excluding training, which utilizes the full amount of available VR AM for an increase in
batch size, all models used in our segmentation algorithm can fit within 10 GB of VR AM, making
them usable on consumer-grade hardware. If training is also required, the model batch and input
sizes can be decreased, resulting in accuracy losses (see non-hyp model variants in Table 4.3) and
decreased inference speed due to limited batching.

The 3D segmentation algorithm is implemented in Python and uses a number of open-source
libraries, with a heavy emphasis on NumPy [75] for general array operations (which most of the
algorithm consists of), and Trimesh [76] + Open3D [77] for mesh operations. As mentioned,
sparse and dense 3D reconstruction is handled by COLMAP [1, 2] and OpenMVS [13] respec-
tively, using their Python bindings, and image segmentation is implemented as a wrapper over the
Ultralytics Python package [78].
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4.2 OBTAINING DATASETS

We have created 5 datasets across 2 different climbing gyms — Crimp (crimp-+) and Boulderhaus
(boulderhaus-*). Crimp (Figure 4.1b) is a newly open climbing gym with a light wall and contains
many modern hold sets, a lot of which are dual texture — a modern trend in climbing where a
climbing hold contains both a glossy texture and a matte one. Boulderhaus (Figure 4.1a), on the
other hand, is an old-school climbing gym with a dark wall and mostly contains older hold sets.

Images for all datasets were annotated using LabelMe [51] with the help of SAM, using point
prompts as inputs and subsequent manual adjustments, which significantly reduced the time in
annotating images, as opposed to an entirely manual process. The mesh was annotated using
Blender [52], by painting objects’ triangles with different colors depending on their class, obtain-
ing both an instance and semantic segmentation based on the color values.

As seen in Table 4.1, using mesh annotation and projection to images, the time required to pro-
duce a segmentation dataset can be reduced by a factor of 13 while maintaining a high average
mloU of 88% to the ground truth. Furthermore, Using SAM with bounding box prompts leads
to an average mIoU improvement of 5% and does not result in a decrease in accuracy.

Table 4.1: Comparison between datasets created using manual image annotation and mesh annotation
with projection to images. 1Image Time is an estimation of image annotation time, calculated
by timing manual annotation on 15 randomly sampled images from each of the datasetes and
extrapolating to the rest. Error assumes 95% confidence with standard deviation.

Dataset Size Image' Mesh mloU mloU (SAM)
crimp-1 184 Sh S7m =+ 24.7% 31m 83.8% 92.7% (+7.9%)
crimp-2 115 4h SOm + 32.0% 31m 84.9% 88.5% (+3.6%)
crimp-3 7 3h 13m + 20.3% 29m  85.8% 89.1% (+3.3%)
boulderhaus-1 85 6h 7m + 36.7% 26m 79.5% 84.5% (+5.0%)
boulderhaus-2 205 11h 38m =+ 38.4% 31m 80.9% 85.0% (+4.1%)
total 666 30h 47m + 41.3% 2h 28m 83.0% 88.0% (+5.0%)

(a) Boulderbaus climbing wall, Heidelberg. (b) Créimp climbing wall, Heidelberg.

42



4.3 Image Detection & Segmentation

4.3 IMAGE DETECTION & SEGMENTATION

Next, we examine the performance on the datasets obtained in Section 3.2.2. The three types
of architectures we analyze are YOLO-segmentation (yolovii-seg), YOLO-detection with SAM
(yolovii-sam) and RT-DETR with SAM (detr-sam). For each, we test the benefits of using pre-
trained weights (-pt, trained on COCO [53]), image augmentations (-aug) and hyperparameter
optimization (-hyp).

The augmentations can be broadly separated into three categories [79] — 4ffine transformations,
which include affine operations such as translation, rotation and perspective, color transforma-
tions, which include all color operations such as changes in the HSV image space, and selective,
which are more complex and include forming a mosaic and image cropping. Their values are
captured in Table 4.2, with a sample batch shown as Figure 4.2.

Table 4.2: Default values for augmentation parameters, split by categories. The values are uniformly sam-
pled from the specified value range / set of permitted values and are applied jointly.

Name Values

5 hsv hue shift [0, 1.0]
3 hsv saturation shift [0,0.7]
hsv volume shift [0,0.4]

., rfotation [0, 360°]
EE translation [0%, 10%]
< scale [0,0.5]
vertical flip {false, true}

— mosaic (4 images) {true}
@ crop by fraction [0, 1.0]

Figure 4.2: Sample image augmentations on crimp-1 dataset images, using values from Table 4.2.
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As for the hyperparameters, we are optimizing the learning rate (loguniform € [1074,1071]),
momentum (uniform € [0.5,0.99]) and barch size ({2, 4, 8, 16, 32}) of the optimizer, the Zmage
size ({640,960, 1024, 1280} ) of the input model and the model sizes for both YOLO (n, s, m, 1,
x) and RI-DETR (1, x), respectively. The hyperparameter optimization is done via successive
halving (Section 2.4.2), with the fitness function being mAP5.

The results are captured in Table 4.3. To properly evaluate whether the models generalize cor-
rectly, they are trained on the first dataset for both walls respectively (crimp-1 and boulderhaus-
1), with the remaining datasets for each wall split evenly for validation and testing. As seen in
Table 4.3, the model performance increases by using pre-trained weights, image augmentations
described in Table 4.2 and hyperparameter optimization.

The top-performing model for both datasets is yolovi1-sam-pt-aug-hyp, which will be the model
used as the segmentation model in the following mesh segmentation section. Interestingly, there
is a significant discrepancy in mAP between the purely segmentational yolo-seg models, and the
yolo/detr models paired with SAM (23.9 for crimp, 12.3 for boulderhaus). Considering the lim-
ited amount of training image, the most likely explanation is that properly training a segmentation
head requires more data to create stable segmentation masks.

The hyperparameter values of the top-performing models were consistently maximum possible
image size (1280), paired with the largest possible batch size that fit in the memory (8), while
other parameters didn’t play a significant role.

Table 4.3: Performance of YOLO and RT-DETR image segmentation models on the respective datasets.
Scores are calculated as an average of S trained models with the given parameters, with
train/val/test splits being 0.8 /0.1/0.1 for crimp-1, boulderhaus-1, and 0.0/0.5/0.5 for the re-
maining datasets for both walls respectively.

. crimp boulderhaus
Image Segmentation mAPs; mAP mAPs, mAP
% yolovil-seg 31.2 12.2 10.0 3.5
ov" yolovlil-seg-pt 56.5 26.1 31.2 13.1
s yolovil-seg-pt-aug 63.9 30.3 33.3 14.1
P yolovlil-seg-pt-aug-hyp 73.9 45.1 45.4 23.5
5 yolovii-sam 39.6 320 147 113
¥ yolovil-sam-pt 67.2 59.9 39.7 31.9
8 yolovlil-sam-pt-aug 73.0 65.5 42.3 33.2
g ‘ yolovil-sam-pt-aug-hyp ‘ 777 51.3
g  detr-sam 23.9 18.7 8.5 5.7
E detr-sam-pt 71.7 61.7 39.2 29.3
3 detr-sam-pt-aug 70.4 60.4 40.0 30.8
& detr-sam-pt-aug-hyp 78.7 68.9 41.5 32.2
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detr-sam-pt-aug-hyp

yolovll-sam-pt-aug-hyp

yolovll-seg-pt-aug-hyp

Figure 4.3: Image segmentations of the segmentation models on the crimp and boulderhaus datasets.

45



4 Experiments

4.4 MESH SEGMENTATION

We examine the performance of our 3D segmentation algorithm against the state-of-the-art se-
mantic and instance segmentation algorithms OneFormer3D [65] and PointTransformer [64].
To verify the validity of our setup, we first replicated the results of both methods on S3DIS [72],
which is an indoor dataset with classes such as door, window, chair, sofa, etc., achieving similar
results as those reported by the authors.

Next, we modified the S3DIS model configuration for both models to train on our indoor wall
datasets, using the same pre-trained weights as S3DIS. The results for both semantic and instance
segmentation are captured in Table 4.4. For our algorithm, we use the yolovii-sam-pt-aug-hyp
segmentation models, as described in the previous section. The hyperparameter-optimized variant
uses Bayesian optimization [80] on the following parameters: VISIBILITY_DISTANCE ([2.0, 20.0]),
VISIBILITY_EASING_FUNCTION_POWER ([—1.0,1.0]), THRESHOLDING_CONSTANT ([0.0, 1.0]) and Lou-
VAIN_COMMUNITY_RESOLUTION ([0.0, 100.0]).

Both methods perform poorly on our data for 3D instance and semantic segmentation, especially
for the boulderhaus dataset. This can be explained by the significant difference in the amount of
training data for our problem and S3DIS respectively, as S3DIS has 271 input pointclouds while
we only have 1 for each dataset. We can get the methods to overfit when using all of the data for
both training and validation, but couldn’t find a way to make them generalize.

A major disadvantage of our algorithm is its speed, averaging 151s on the evaluated datasets, as op-
posed to <1s for both transformer-based approaches. This is due to the fact that the transformer-
based approaches are efficiently implemented on the GPU, whereas our algorithm is mainly CPU-
bound and not overly optimized. Fortunately, this is not a large issue for our use case, as the time
is dominated by the duration of the 3D reconstruction.

Interestingly, the hyperparameter optimization slightly decreases the performance of semantic
segmentation on the crimp dataset (81.5 — 81.4) and doesn’t yield much improvement for
other metrics, suggesting that the hand-crafted hyperparameters were close to optimal. On the
other hand, it leads to a decent improvement for the boulderhaus dataset for both task metrics

(23.5 mAP — 26.1 mAP, 62.7mloU — 71.8 mIoU).

Table 4.4: Combined metrics for 3D instance and semantic segmentation on crimp and boulderhaus.

Instance Semantic
crimp boulderhaus crimp boulderhaus
mAPsg mAP mAP5y mAP mloU mloU
OneFormer3D 16.2 6.0 3.2 1.0 57.8 22.5
PointTransformer 19.7 7.3 3.2 1.4 78.1 41.8
Our method (base) 72.8 331 566 235 62.7

Our method (nyp) | 75.9 66.0 81.4
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4.4 Mesh Segmentation
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Figure 4.4: Visualization of instance and mesh segmentations produced by our algorithm.
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4 Experiments

4.5 INSTANCE CLUSTERING

With the 3D segmentations available, the remaining task is to cluster the 3D segmented object
instances into individual routes. We again use Bayesian optimization as no partial results are avail-
able, and optimize for FLATTEN_RATIO ([0.0, 1.0]), LouvAIN_communITY_RESOLUTION ([0.0, 100.0]),
MIN_HoLD_pIsT ([0.0, 5.0]) and max_xoLp_p1sT ([0.0, 10.0]).

Asseen in Table 4.5, the method performs well with default parameter values, achieving 0.93 ARI
average over both datasets before hyperparameter optimization and 0.98 ARI after.

As for the values of the hyperparameters, the FLATTEN_RATIO played no role to the method perfor-
mance, remaining arbitrary over all improvements in ARI. The community resolution and hold
distance parameters deviated slightly from the default values for boulderhaus, stabilizing around
LOUVAIN_COMMUNITY_RESOLUTION = 0.76, MIN_HOLD_DIST = 1.1 and max_HoLp_pIst = 3.0.

We have experimented with different hyperparameters for the classifier network, such as model
size and input image size, as well as not using segmentation masks (as visualized in Figure 3.8) and
have always achieved close to 100% accuracy for the hold type classifier (Algorithm 8). Although
this might seem unrealistic, we are essentially training a classification network to recognize a lim-
ited set of known colors, which is a trivial task for a classifier, especially when averaging many
classifications of the same hold of different sizes and angles.

Table 4.5: Results of our method compared to SOTA methods.

Route Clustering ¢ Argnlp bOUIAd;{Ihaus
Our method (base) ~ 0.978 0.883
| Our method (hyp)| [0.978]  [0.982]

Figure 4.5: 3D hold instances (top) and the clustered instances (bottom) of the crimp-1 dataset.

48



4.6 USAGE

4.6 Usage

A proof-of-concept version of a climbing app called CLIMBUDD)’) that uses our 3D segmentation
method, developed by Tom4s Sldma (thesis author) and Matéj Kripner, is available at https://
climbuddy . com/, showcasing boulders for the Crimp climbing gym. The current functionality,
besides displaying the current 3D models of the boulders online (Figure 4.62), include various
social features such as rating the boulders (Figure 4.6a), progress and session tracking (Figure 4.6b)

and a global leaderboard (Figure 4.6¢).

Future releases of the app include managing competitions and events, the ability to view older
boulders, and more social features. Viewing old boulders is especially valuable, both for climbers,
who can mark memorable ascents, and also for the gym, as the setters can gain insights about

which types of boulders climbers prefer and set accordingly.

CLIMBUDDY

" 0
Profile

" :~.\ tomas@slama.dev

2 Tomés Sléma

Sign Out [+ Settings 8

Z= Progress 8/19

-2 A .. 22
2R RR R

-
B Sessions

Wed, July 31, 2024

| A T
a 7a

a Tb+
M Tried 4 Climbed | #

(a) Boulder overview & rating. (b) Progress & session tracking.

CLIMBUDDY
A a

Rankings

W (®) Alex Megos 503

2. (® Adam Ondra 403

3. ! Tomds Slama 395

Oa 120
0z
O&
Oa
Oa
Oa
Oa

(c) Global leaderboard.

Figure 4.6: Screenshots from the CLIMBUDD)" web app.

49


https://climbuddy.com/
https://climbuddy.com/




S CONCLUSION

We have implemented a fully automatic system for generation and subsequent 3D semantic, in-
stance segmentation and clustering of a scene, focusing on indoor climbing gyms. In particular,
we identified four subtasks: aligned 3D reconstruction (Section 3.1), image segmentation (Sec-
tion 3.2), 3D mesh segmentation (Section 3.3) and instance clustering (Section 3.4).

We have used commonly available algorithms for well-established subproblems (i.e. COLMAP
for 3D reconstruction), and developed a new algorithm for 3D semantic and instance segmen-
tation, outperforming the state-of-the-art approaches due to the utilization of information from
the 3D reconstruction, such as camera positions and images. The segmentation algorithm con-
sists of three parts: first, images are segmented using an image segmentation network, with the
segmentations projected onto the reconstructed mesh (Section 3.3.2). Next, graph clustering is
used on the graph of projections, with edge weights being the projection overlaps (Section 3.3.2).
Finally, a thresholding approach is used to create the final segmentations, using the ratio between
positive and negative detections (Section 3.3.2).

To prove the viability of such system as a potential backend for an online climbing platform,
a demo of such platform, referred to as CLIMBUDDY, was developed independently to the the-
sis by Tom4s Sldma (the thesis author) and Mat¢j Kripner, and is currently available at https:
//climbuddy.com/.

There is much room for improvement for our segmentation approach, namely with regards to
speed — an efficient re-implementation of the computationally intensive parts of the algorithm
would significantly speed up the inference. Furthermore, data from the 3D reconstruction, such
as depth map estimates, could be used to improve the accuracy of the segmentation networks and
thus the overall quality of the resulting 3D segmentations.

The availability of 3D models of the individual boulders gives rise to problems which couldn’t
be easily solved without them. Awutomatic grade inference can be used to suggest grade ranges
for boulders without the input from the setter, reducing the work setters have to do after setting
new boulders. Learning-based route setting can also be explored, using learning-based methods for
setting indoor boulders. While there have been attempts to tackle these problems for standardized
walls such as Moonboard [81, 82], there is little to no progress for regular climbing walls due to
the prior lack of availability of 3D data.
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